Algebraic Geometric codes on Hirzebruch surfaces
نویسنده
چکیده
We define a linear code Cη(δT , δX) by evaluating polynomials of bidegree (δT , δX) in the Cox ring on Fq-rational points of the Hirzebruch surface on the finite field Fq. We give explicit parameters of the code, notably using Gröbner bases. The minimum distance provides an upper bound of the number of Fq-rational points of a non-filling curve on a Hirzebruch surface. We also display some punctured codes having optimal parameters. AMS classification : 94B27, 14G50, 13P25, 14G15, 14M25
منابع مشابه
Quantum Stabilizer Codes from Toric Varieties
A.R. Calderbank [1], P.W. Shor [2] and A.M. Steane [3] produced quantum stabilizer codes from linear codes containing their dual codes. A. Ashikhmin, S. Litsyn and M.A. Tsfasman in [4] used the construction to obtain asymptotically good quantum codes fra codes on algebraic curves. In [5] the author developed methods to construct linear error correcting codes from toric varieties and derived the...
متن کاملHirzebruch Surfaces and Error-correcting Codes
For any integral convex polytope in R there is an explicit construction of an error-correcting code of length (q 1) over the nite eld Fq , obtained by evaluation of rational functions on a toric surface associated to the polytope. The dimension of the code is equal to the number of integral points in the given polytope and the minimumdistance is estimated using the cohomology and intersection t...
متن کاملDifferential approach for the study of duals of algebraic-geometric codes on surfaces
In this article, a differential construction for the dual of an algebraic-geometric code on a projective surface is given. Afterwards, this result is used to lower bound the minimum distance of this dual code. The found bounds involve intersection numbers of some particular divisors on the surface. AMS Classification: 14J20, 94B27, 11G25.
متن کاملResidus de 2-formes differentielles sur les surfaces algebriques et applications aux codes correcteurs d'erreurs
The theory of algebraic-geometric codes has been developed in the beginning of the 80's after a paper of V.D. Goppa. Given a smooth projective algebraic curve X over a finite field, there are two different constructions of error-correcting codes. The first one, called"functional", uses some rational functions on X and the second one, called"differential", involves some rational 1-forms on this ...
متن کاملError-correcting codes on low rank surfaces
In this paper we construct some algebraic geometric error-correcting codes on surfaces whose Neron-Severi group has low rank. If the rank of the Neron-Severi group is 1, the intersection of this surface with an irreducible surface of lower degree will be an irreducible curve, and this makes possible the construction of codes with good parameters. Rank 1 surfaces are not easy to find, but we are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.08407 شماره
صفحات -
تاریخ انتشار 2018